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A note on somersaulting and twisting
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Abstract. In this note we consider a body performing a somersaulting motion combined with torque-free twists.
The latter rotation is assumed to be initiated by an instantaneous change of the configuration of the diving body
just after the start of the somersault. We comment on the following issues: the realization of a discontinuous
change of configuration, the calculation of the resulting angular velocities and the question how the number of
twists can be increased.

1. Introduction

The kinematical behaviour of a free body, for example that of a diver, gymnast, astronaut
or a cat, is determined by the two basic laws of physics, viz. the balance of linear momentum
and the balance of angular momentum. The first one controls the motion of the centre of
gravity, and this motion is well understood. Here we shall consider only the angular motion
as it follows from the second law. Using a frame of reference moving with the centre of
gravity and neglecting any forces from air friction, we see that the angular momentum is
conserved during the motion in midair. Despite the seeming simplicity of this concept, it has
given rise to misunderstandings and erroneous inferences in books written by or for coaches
engaged in physical education, e.g. [1].

In [2] Frohlich reconsiders the problem of performing somersaults and twists. A somer-
sault is a rotation of the body about an axis along a line going from the performer's left side
through his center of mass to his right side, and a twist is a rotation about an axis going from
his head to his feet. Starting from basic principles Frohlich presents a meticulous and
comprehensive analysis of several types of motions. He arrives at findings which are on a par
with experimental observations. In this note we will consider only one of the motions treated
by Frohlich, namely the torque-free twist with angular momentum. This type of motion has
been investigated by Mehn and Engelhardt [3] as well. On the basis of Frohlich's analysis
they arrive at definite recommendations to increase the number of twists.

We shall enter upon the following points. First of all Frohlich [2], and after him Mehn and
Engelhardt [3], apply the notion of an instantaneous change of attitude of a body. They do
this without any further comment. However, as this concept does not feature in textbooks
on classical mechanics, it seems worthwhile to consider it here in some detail. Our aim is to
find out whether it is a conception to be accepted on account of a rational analysis, or not.
The answer is yes. Further, we note that in [2] and [3] no use is made of Eulerian angles to
describe the kinematics of a somersault combined with one (or more) twist(s). As is to be
expected, the introduction of these angles simplifies the analysis and enhances one's insight
into the motion. Making a consistent use of these angles, we will reconsider the calculation
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of the rotational velocities occurring just after the instantaneous change of attitude. Our
analysis yields results, some of which differ from those contained in [2]. Finally, we comment
on the central issue put forward in [3].

2. Instantaneous change of attitude

2.1. Mass point

We begin this section with the simple problem of the one-dimensional motion of a mass point
m. At time t = 0 the mass point is at rest and we apply a constant force K. The mass begins
to move, and after a time interval At we superimpose another force K in the opposite
direction. We know that the velocity v for t > At equals

KAt
v K (2.1)

m

Next, letting At - 0, we assume that K increases beyond all bounds, so that the impulse
S = KAt remains finite. Then (2.1) yields (Fig. 2.1)

S
v = S (2.2)

while the position of m has not changed.
This well-known result is widely accepted as a rational concept, although it is generally

realized that the introduction of infinite instantaneous forces in a theoretical model is only
an approximation to what actually happens in the real world. However, it is a reasonable
approximation in situations in which the motion of a body extends over an interval of time
considerably larger than the duration of the actual impulse.

Now we repeat the above procedure in the case of a mass m, which at t = 0 is at rest and
receives an impulse S. It gets a velocity v = S/m and during an interval of time At it is
displaced through a distance

Ax = vAt = SAt (2.3)
m

S
S v=m

X m

Fig. 2.1. An impulse S is applied to a mass point m.

Sm S

Ax=vt

Fig. 2.2. In succession two impulses S with opposite sign are imparted to a mass point m.
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At that moment another impulse S of equal magnitude, but with a different sign, is imparted
to m. Apparently, the mass point is left, again at rest, in a position at the distance Ax from
its initial one. Then, once more we let S - o and At -. 0, so that SAt remains finite, after
which we retain (2.3). In this way we arrive at the concept of an instantaneous change of
position of a point mass. As far as we know this idea has not found much recognition. In
general, it is not applied. However, there are situations where it may be of some use, e.g.,
in problems considered in [2] and [3]. On the analogy of the comment following (2.2), we can
say that the introduction of an instantaneous change of a configuration of a system makes
sense only if the interval of time extending between the application of the (very large)
impulsive loads is much smaller than the time duration of the ensuing motion. It is admitted
that the practical implementation of this theoretical concept is less simple than the appli-
cation of a single impulse. Accordingly, the quantity SAt has remained without a name. Yet
this comment does not detract from the fact that the notion of an instantaneous change of
position follows from a rational analysis. As is known, this analysis can be formalized
mathematically. In doing so, the impulsive force is regarded as a delta function So(t), giving
rise to a discontinuity of the velocity, but retaining the spatial configuration. The second
singularity is then to be considered as a force which formally behaves as the distributional
derivative of a delta function. This yields a discontinuity of the configuration, but leaves the
velocity unchanged. Formally it is possible to proceed on the sequence of higher singularities,
but this would be of little use.

2.2. Free body

In this section we extend the concept of an instantaneous shift of the position of a mass point
to an immediate alteration of the configuration of a body. We accept the following model
of a human body (Fig. 2.3(a)). Two rigid and homogeneous bars AB (mass m,, length 21)
and CD (mass m2, length 2a) are connected by a hinge E. The distance of E to the centre of
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Fig. 2.3. A model of a diving body, consisting only of two hinged bars AB and CD.
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gravity of AB is b. The bar AB is along the head-to-toe axis, whilst EC and ED represent
the arms. For the moment being we consider the two-dimensional motions in the plane
through AB and CD. At time t = 0 the system is at rest and the angle /3 denotes the initial
position of CD relative to AB. Then in the hinge E internal impulsive moments M are applied
(Fig. 2.3(b), (c)). A simple calculation, which we omit, shows that the induced motion starts
with the initial velocities

bM

1 2(m, + m2) + m2b2
'

(2.4)
(mI + m2)M M

m, [½12(m, + m2) + m2b2 ] 32a2 

where u = initial horizontal velocity of E, v = initial vertical velocity of E, o, = initial
angular velocity of AB, and o02 = initial angular velocity of CD.

The value of the internal impulsive force S. follows from S = m2u, while S2 = 0.
A likewise simple analysis of the ensuing motion yields readily that the values of co, and

o2 are preserved during the motion. As is easily verified, the bar AB appears to perform a
stationary rotation about the centre of gravity of the total system. This centre is located at
a fixed point of AB at a distance m, b/(m, + m2) below E. From (2.4) we find

(m + m2)m2a2)2
= (M2 · (2.5)' m [12(ml +m)+ m2 b2 ] (2.5)

On closer inspection this is in agreement with Frohlich's formula (A6) in [2].
The motion is simple, in particular because the quantity fB does not occur in the expres-

sions for the velocities. This means that the motion can be stopped at any arbitrary moment
At by imparting the same internal impulsive moments M at E in the inverse directions. Then,
the angles through which the two bars have been rotated, are proportional to MAt. As
before, we assume At - 0, so that MAt retains a finite value. In this way we arrive at the
conception of an instantaneous change of configuration. It is clear that the angle 0, pertain-
ing to the angular motion of AB, and the angle ca through which CD has rotated impulsively,
are in the ratio of ol to co2.

We now apply the above to a diver which after starting a somersault induces a twisting
motion by sharply throwing his arms from an extended horizontal position, one down and
the other up laterally in the plane of his body. To this end we estimate: a - 0.6m, I -
0.85 m, ml - 60 kg, m2 - 10 kg, b/l 2/3. From (2.5) we see col /o2 - 0.0698. According
to Mehn and Engelhardt [3] 0 - 60, so that c - 840, yielding 0/ac - 0.0714. The agreement
is fairly good.

An improved model of a human body in the context of these calculations would follow
from Fig. 2.4. It differs from that of Fig. 2.3 in that EF represents the shoulder to which the
arms DE and CF are connected by means of the hinges E and F. If impulsive internal
moments M in E and F are applied, the initial angular velocities o, and o2 are related by

{212 + 2m 2a2 + 2m2ac cos /3}02
CO = 2m mb2 (2.6)

2n + I + 2 2c(a cos fi + c)
2m2 + ml
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A

Fig. 2.4. An improved model of a diving body, consisting of three rigid parts ABEF, ED and FC, respectively.

In this expression and 2 are the central moments of inertia of ABEF and FC, DE,
respectively, whilst m, is the mass of the part ABEF and m2 is the mass of each arm FC, DE.
The meaning of a, b, c, fB and I follows from Fig. 2.4. As contrasted with (2.5), the ratio of
ol and co2 depends on the angle fl. For c/l - 1/4 the value appears to be somewhat higher
than that calculated above. The motion ensuing from the impulsive start of the Fig. 2.4
model is not so simple as that shown by the former model. Here we shall not pursue it
further.

3. Kinematics and mechanics of somersaulting and twisting

In order to describe the kinematical behaviour of a body performing a somersault combined
with twists, we shall apply Eulerian angles p, 0 and , as depicted in Fig. 3.1. The
somersaulting and twisting motions follow from p and ¢, respectively, both considered as
functions of time t. The time derivative is the angular velocity of somersaulting co, directed
along the Z-axis, and ; is the angular velocity of twisting o,, pointing in the positive
Z'-direction. The (small) angle 0 is kept constant during the motion, except at some discrete
points of time at which it is changed discontinuously.

Following Frohlich [2] we assume that the twisting motion is induced in the following
manner. At t = 0 the diver has initiated a pure somersaulting motion with his arms extended
to his sides, so that 0 = 0, p = 0, = , ¢ = 0, where co denotes the initial angular
velocity of somersaulting. The vector Do of angular momentum is directed along the Z-axis
and equals (Fig. 3.2)

Do = I2oco,0 , (3.1)

where I0 is the central moment of inertia about the left-to-right axis (position C: pretwist
layout, see Fig. 1 of [2]). The lower index 0 refers to this situation. Then, by means of internal
impulsive muscle power the right arm is thrown down to his side and the left arm above his
head (position E: twist throw, see Fig. 1 of [2]). This result in an instantaneous rotation of
the body through the small angle 0, as depicted in Fig. 3.1, and in a sudden change of the
moments of inertia. We calculate the velocities after the impulsive change as follows. With
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2

/
X'
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Fig. 3.1. The Eulerian angles qp, 0 and O determine the position of the diver with respect to the fixed coordinate
axes X, Y, Z. The somersaulting and twisting motions follow from p and i, respectively, considered as functions
of time t. During the motion the angle of inclination 0 remains constant.

iDx,

Fig. 3.2. DO is the vector of angular momentum before the instantaneous change of configuration. After that the
components along the X'- and Z'-axis are D, and D,, respectively.

I
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reference to the coordinate system X', Y', Z' (Fig. 3.1) the components of the angular
velocity vector are

ox = -(cos 0, Co, = O, c = 0, + p k sin0. (3.2)

The components of the vector of angular momentum become

Dx, = -I, cos, D = 0, D, = I2( + sin 0), (3.3)

where I, and 12 are the central moments of inertia about the head-to-toe axis and the
left-to-right one, respectively (position E: twist throw, Fig. 1 of [2]). Since the angular
momentum vector is preserved, we have (Fig. 3.2)

-D,. cos + D,. sin = Do,
(3.4)

+Dx, sin + Dz, cos 0 = 0,

yielding

Dx, = - Do cos 0 and D,. = Do sin 0.

This result is evident.
Then from (3.1), (3.3) and (3.2) we have

,20 /'1 1\
o = = I 5 0 =s = -2 (I - )O sin 0, (3.5)

and

CO: = -- )0 sin0, o = + co sin 0. (3.6)
I2 (3

Comparing these results with the expressions (6) and (7) of Frohlich [2], we see that, aside
from the sign, his result (6) does not comply with (3.6)1. However, as the ratio 120/12 - 0.94,
the discrepancy is small.

Furthermore, in our case the rate of twisting per somersault appears to be

o, = (I2 _ 1) sin0, (3.7)

differing from (7) of [2] as well. From [2] we estimate 2/II, - 16 and with 0 6 this yields
co,/ros - 1.5. In [3] we find for this ratio the value 1.7.

4. Increase of the number of twists

Mehn and Engelhardt [3] state that it is relatively simple to increase the number of twists.
This can be achieved by enlarging the angle of inclination 0, which in conformity with (3.5)
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determines the angular velocity of twisting co,. For small values of 0 the two quantities are
almost proportional. According to [3] the manner in which the increase of 0 should be
accomplished, is as follows. During a forward somersault with twists the diver has to wait
till the instant at which one half of a single somersault has been performed and one half of
a single twist as well. Using our notations this means the moment at which p = 7r and, at
the same time, = . Apparently the diver is in an upside-down position. Then the two
arms should be thrown through an angle of 180° in a direction opposite to that in which they
have been moved at the beginning of the somersault. In other words (Fig. 2.3) changes
from + /2 to - nr/2 instantaneously. After this the right arm is down to the diver's side and
the left one is above his head. This second impulsive motion results in an increase of the angle
of inclination from 0 to 30, as stated in [3].

However, from our analysis it is obvious that there is no relation between the specific point
of time at which this manoeuvre has to be performed and the somersaulting motion
described by p = cot, as assumed in [3].

In fact the action can be carried into effect at any time t = to, when = , to = n, n
being an odd number, and so irrespective of the momentary value of q. If we calculate the
value of p pertaining to n = 1 we find from (3.7):

(I2/1 - 1) sin 0 (3.8)

Using Table III of[2] we estimate I2/1 16. With 0 6 this yields p 0.677r. This value
is well below the value p - 7r, mentioned in [3]. It means that a diver should not defer the
manoeuvre till he is upside down completely.

Finally, from the foregoing it is clear that a similar action conducted at the time when
f = 2 (or by any chance ¢ = 4r) can result in a decrease of the angle 0. In principle this
facility can be used to bring about a perfect vertical position, in the plane of the original
somersault, just before the diver touches the water surface. We do now know whether it is
applied to this end indeed.
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